Tag Archives: taxes

We Are All Socialist

In Marxist theory (from where the terms socialism and communism definitively originate), we essentially have the following idea and sets of definitions.  A society consists of people, and people consist of things called property (with the second consist in the sense of ownership).  Communism refers to a society in which society itself owns all of the property;  that is, in a communist society, each individual owns all of the property.  Note that this is equivalent to definition 2a in [1] for if there is no private property, then for every property, there is no person who does not own it (otherwise it would have been private).  And conversely, if everyone owns everything, then there is no property such that some person doesn’t own it (i.e. there is no private property).

It follows that we define a representative government to be communist if and only if it is a government of a communist society.  This way if we think of the government as a subset of society, then if members of the government own all of the property (i.e. communist government) and the government is a representative government, then all of the members own all of the property via the representation.  And conversely (and trivially) if the society is communist, then all members, and hence also those in the government, own all of the property.

In reality, no society or government is truly communist;  one can always find something not owned by all members of the government or society.  For example, one could argue that any individual A owns their thoughts, and no other individual B\neq A owns the thoughts of A.  So this would be one trivial counter example.  A capital society is defined as a society that is not a communist society.  That is, in a capital society, it is not the case that every member owns all property.  Ownership in a society may certainly change over time.  If it is heading in the direction of communism, we say the society is socialist.  If it is heading away from communism, then we say the society is capitalist.  If it is neither heading toward or away from communism, then we will call it static.

The claim that we are all socialist boils down to the fact that there is much consensus on the desire of public services including police, fire, medical, and education.  We pay taxes for these entities that serve us as needed.  In this sense, we all own them.  And we always want to see them improved.  For these things to exist, we need a government to oversee them.  Continually wanting to see them improved translates to us wanting a say in how governmental money is distributed to them.  Since this money comes from other members of society (as taxation for example), this amounts to us wanting more ownership over what was formerly some other person’s property.  It is this sense in which we are all socialist.

Just take a look at the chart previously posted.  It shows that relative to where we are now (the actual distribution of wealth), we want the wealth to be different (what we would like it to be).  We want more ownership over how resources are distributed in society.

Also consider provisions in the Affordable Care Act once stripped from its colloquial term “Obamacare”, which has lately had much negative connotation.  These polls suggest that most Americans support having more control/ownership of insurance companies in the sense of declaring how they can and cannot operate [2], [3].

[1]  http://www.merriam-webster.com/dictionary/socialism

[2]  http://www.reuters.com/article/2012/06/25/us-usa-campaign-healthcare-idUSBRE85N01M20120625

[3]  http://www.washingtonpost.com/blogs/plum-line/post/republicans-support-obamas-health-reforms–as-long-as-his-name-isnt-on-them/2012/06/25/gJQAq7E51V_blog.html


Political Policy and the Wealth Gap

Consider the US income distribution in 2005.

Image by Catherine Mullbrandon (1)

It demonstrates that a clear majority of the population earns an income at the relatively low end of possible incomes in our economy.  This sort of curve isn’t too surprising since those who acquire relatively more resources initially can in turn acquire additional resources easily since they can afford costly investments with large payoff.

This presents a problem of endgame capitalism.  The idea is that if a system has a finite amount of resources and a finite number of people attempting to acquire as many resources as they can such that none have 0 resources, then the instability of socialism (where everyone has the same amount of resources) will force some to have more, and in turn make it easier for them to get more by contracting others (i.e. forming a corporation).  Slowly those with less lose more and more over time until several “corporations” remain.  Then the process repeats, and eventually we are left with a single owner, or at least one person getting arbitrarily close to possessing all of the resources.  To combat this endgame, we are left with political policy.

The highest tax bracket in the US is 35% and applies to households making over $373,000 [2].  That is less than 2% of the population.  There will come a point in our future where we will have to decide between “fairness” and efficiency.  It would be far more efficient for very low incomes to have 0% (or at least very low) tax rates and for the upper echelons pay bigger percentages.  They could still rank far above the rest after taxes.  During previous time periods taxes were raised to combat the costs of the federal government (in particular WWII in 1945).

Image by Greg Hollingsworth (3)

Also of interest (as Greg points out) is the correlation between the decrease in the top tax rate and increase in the national debt.

[1]  http://visualizingeconomics.com/2006/11/05/2005-us-income-distribution/

[2]  http://www.irs.gov/pub/irs-drop/rp-09-50.pdf

[3]  http://greghollingsworth.org/blog/2009/8/10/the-high-cost-of-low-taxes.html

A New Tax Policy

Consider a simple tax policy where you plug your income into a function, and it spits your tax rate out.  The idea is to do away with the discrete tax bracket system and instead have a continuous system.  Consider the generic function

t_0(x)=1-e^{-\alpha x^2}.

We have t(0)=0 and t(\infty)=1.  This satisfies the boundary conditions we want on a continuous progressive tax policy where t(x) represents the tax rate (1 being 100%) if your income is x.  To gain some control over this generic function, we will wish to fix a point on it (i.e. assign a value for \alpha).  Suppose the average income is \sigma, and that we want t(\sigma)=.25.  Then we have that \alpha=\sigma^{-2}\log\frac{4}{3}.  Substituting this gives

\displaystyle t(x)=1-e^{\log(\frac{3}{4})\sigma^{-2}x^2}=1-\left(\frac{3}{4}\right)^{\sigma^{-2}x^2}.

Differentiating once shows the slope starts and “ends” at 0.  Differentiating again shows that the maximal rate of tax rate increase is at x=\sigma/\sqrt{\log(\frac{16}{9})} (that is, tax rates increase the fastest around this income).

We may now attempt to construct another function \mu where \mu(x) is the number of people in a system who have income x.  We can generalize to define \mu(A) for some A\subseteq [0,\infty), where it will denote the number of people whose income falls in A\mu([0,\infty))=P where P is a constant called the population.  We could attempt to start with a generic function

\mu_0(x)=P_0e^{-\alpha x^2}

where P_0 is called the unemployment number (\mu_0(0)=P_0).  In particular we could attempt to determine \alpha by requiring


But evaluating the integral poses a problem; and hence so does expressing \alpha in terms of the mean (or even median).  Thus it is difficult to start with the mean or median.  Let m denote the mode income and P_m be the number of people with income m.  Consider the function


Here we have \mu(m)=P_m, \mu(0)=P_0, and \lim_{x\to\infty}\mu(x)=0 since P_m\geq P_0.  With tax and distribution functions t and \mu we can define the revenue function as the Riemann-Stieltjes integral

\displaystyle R(t,\mu)=\int_0^\infty xt(x)\,d\mu(x).

Similarly we have the gross product